organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

9-(2-Phenylethyl)-6-(2-thienyl)-9H-purine

Pooja Anjali Mazumdar,^a Amit Kumar Das,^a* Anne Kristin Bakkestuen,^b Lise-Lotte Gundersen^b and Valerio Bertolasi^c

 ^aDepartment of Biotechnology, Indian Institute of Technology, Kharagpur 721 302, India,
^bDepartment of Chemistry, University of Oslo, PO Box 1033, Blindern, N-0315 Oslo, Norway, and ^cDipartimento di Chimica and Centro di Strutturistica Diffrattometrica, Università di Ferrara, Via L. Borsari 46, 44100 Ferrara, Italy

Correspondence e-mail: amitk@hijli.iitkgp.ernet.in

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.047 wR factor = 0.130 Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound [alternative name: 9-benzyl-6-(2-thienyl)-9*H*-purine], $C_{16}H_{12}N_4S$, the purine system is not strictly planar and the dihedral angle between the fused rings is 1.46°. The packing of the molecules is influenced by hydrophobic and hydrophilic interactions.

Received 1 October 2001 Accepted 10 October 2001 Online 13 October 2001

Comment

Tuberculosis (TB) is the major cause of death, from a single infectious agent, among adults in developing countries and there has been an unfortunate revival of TB in the industrialized world. There are *ca* 8 million new cases of TB each year and it has been estimated that *ca* 30 million people will die from tuberculosis within about 10 years (Duncan, 1997). Thus, there is an urgent need for new antimycobacterial agents and various 9-benzylpurines, including the title compound, (I), have shown high inhibitory activity against *Mycobacterium tuberculosis* (Bakkestuen *et al.*, 2000). Hence, we undertook the present study to examine the effect of the thiophene substituent at the 6-position.

The molecular geometry is illustrated in Fig. 1 and the bond lengths and angles are listed in Table 1. The values are in agreement with those found in other structures containing the purine ring system (Stewart & Jensen, 1964; Lai & Marsh, 1972; Wilson *et al.*, 1986; Low *et al.*, 1987; Flensburg, 1994).

The benzene ring is inclined at an angle of $64.03 (5)^{\circ}$ to the purine ring system and at an angle of $60.23 (6)^{\circ}$ to the thiophene ring at the 6-position. The thiophene ring is nearly coplanar with the purine ring, the dihedral angle being only $6.39 (4)^{\circ}$. The base is not exactly planar; the two rings are rotated by $1.46 (6)^{\circ}$ about the C4–C5 bond.

The bond distance N9–C10 [1.469 (2) Å] is longer than that found in the case of adenin-9-ylacetate [1.451 (1) Å] and the C8–N9–C10–C11 torsion angle of –94.6 (2)° also differs from the value of 104.65 (13)° reported by Flensburg (1994). The bond distances and angles in the thiophene ring are, by and large, normal. The bond angles C5–C6–C17 [123.89 (15)°] and N1–C6–C17 [118.13 (14)°] are compar-

 $D_x = 1.388 \text{ Mg m}^{-3}$

Cell parameters from 7690

Trigonal prism, pale yellow

 $w = 1/[\sigma^2(F_o^2) + (0.055P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

+ 0.536P]

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta\rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$

 $0.48 \times 0.43 \times 0.12 \ \text{mm}$

Mo $K\alpha$ radiation

reflections

T = 293 (2) K

 $R_{\rm int} = 0.024$

 $\theta_{\text{max}} = 28.0^{\circ}$ $h = -14 \rightarrow 14$

 $k = -11 \rightarrow 12$

 $l = 0 \rightarrow 22$

 $\theta = 3.2-28^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$

Figure 1

Plot showing the atomic numbering scheme for (I). Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

Figure 2

A view of the packing of the molecules in the unit cell.

able to corresponding angles of 124.21 (10)° and 118.29 (10)° in the case of NH_2 substitution at the 6-position, indicating that the thiophene ring has no great effect on the bond angles.

The N1–C6 bond distance of 1.352 (2) Å is slightly greater than a C=N distance of 1.282 (2) Å in 2-[(4-hydroxyphenyl)iminomethyl]thiophene (Kazak *et al.*, 2000) due to the aromaticity of the purine ring system. However, the C6–C17 bond distance of 1.449 (2) Å is not affected.

As is evident from Fig. 2, a hydrophobic region is created due to interactions between the benzene rings. The molecular packing is stabilized by segregation of alternate hydrophobic and hydrophilic zones.

Experimental

The title compound was synthesized as described by Gundersen *et al.* (1994). Crystals suitable for X-ray diffraction studies were obtained by slow evaporation at room temperature from a mixture of ethanol, acetone and chloroform (1:1:1).

Crystal data

 $\begin{array}{l} C_{16}H_{12}N_{4}S\\ M_{r}=292.36\\ Monoclinic, P2_{1}/c\\ a=10.1130 (4) Å\\ b=8.9101 (2) Å\\ c=15.6434 (7) Å\\ \beta=96.8550 (17)^{\circ}\\ V=1399.52 (9) Å^{3}\\ Z=4 \end{array}$

Data collection

Nonius KappaCCD area-detector diffractometer φ and ω scans 7690 measured reflections 3364 independent reflections 2745 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.130$ S = 1.093364 reflections 234 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

C6-C17	1.449 (2)	C17-S18	1.7164 (17)
N9-C10	1.469 (2)	S18-C19	1.700 (2)
C10-C11	1.504 (2)	C19-C20	1.339 (3)
C17-C21	1.391 (3)	C20-C21	1.411 (3)
N1-C6-C17	118.13 (14)	C21-C17-C6	128.41 (15)
C5-C6-C17	123.89 (15)	C21-C17-S18	110.91 (13)
N9-C10-C11	112.85 (14)	C6-C17-S18	120.67 (13)
N7-C5-C6-N1	-179.02 (16)	N9-C10-C11-C16	88.9 (2)
N7-C5-C6-C17	-0.4(3)	N1-C6-C17-C21	-175.69(16)
C4-C5-C6-C17	177.47 (14)	C5-C6-C17-C21	5.7 (3)
C8-N9-C10-C11	-94.6(2)	N1-C6-C17-S18	5.0(2)
C4-N9-C10-C11	88.3 (2)	C5-C6-C17-S18	-173.64 (12)
N9-C10-C11-C12	-91.0 (2)		

All H atoms, except for H21, were located from a difference Fourier synthesis and refined isotropically. H21, attached to C21, was positioned geometrically and not refined. Bond distances to H atoms range from 0.90 to 1.00 Å.

Data collection: *COLLECT* (Nonius, 1997); cell refinement: *DENZO–SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO–SMN*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 1999); software used to prepare material for publication: *SHELXL97*.

AKD and PAM acknowledge financial support and the award of a Junior Research Fellowship to PAM, both from the CSIR (New Delhi).

References

Bakkestuen, A. K., Gundersen, L.-L., Langli, G., Liu, F. & Nolsøe, J. M. J. (2000). *Bioorg. Med. Chem. Lett.* **10**, 1207–1210. Duncan, K. (1997). *Chem. Ind.* pp. 861–865.

- Flensburg, C. (1994). Acta Cryst. C50, 1480-1482.
- Gundersen, L.-L., Bakkestuen, A. K., Aasen, A. J., Øverås, H. & Rise, F. (1994). Tetrahedron, 50, 9743–9756.
- Kazak, C., Aygün, M., Turgut, G., Odabasoglu, M., Özbey, S. & Büyükgüngör, O. (2000). Acta Cryst. C56, 1044–1045.
- Lai, T. F. & Marsh, R. E. (1972). Acta Cryst. B28, 1982-1989.
- Low, J. N., Tollin, P. & Howie, R. A. (1987). Acta Cryst. C43, 2184-2186.
- Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. London: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1999). *PLATON*. Version of October 1999. Utrecht University, The Netherlands.
- Stewart, R. F. & Jensen, L. H. (1964). J. Chem. Phys. 40, 2071-2075.
- Wilson, C. C., Tollin, P. & Howie, R. A. (1986). Acta Cryst. C42, 697-700.